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The structure of thermal convection in horizontal plane Couette flow is investigated.
Numerical experiments show that transformation of the structure takes place in the
linear stage of perturbation growth. In the non-rotating or slowly rotating case, the
transformation from cellular to parallel roll convection occurs. In the rapidly rotating
case, on the other hand, the transformation from cellular to parallel roll convection
occurs via transverse roll convection. As a result, transverse roll convection of finite
amplitude can be formed in the rapidly rotating frame of reference. The formation
mechanism of the transverse roll is investigated by linear analysis. In both the non-
rotating and rotating cases, the horizontal velocity shear temporarily accelerates the
growth rate of the transverse mode for a relatively short period. In the non-rotating or
slowly rotating case, however, the net effect of this horizontal velocity shear is small.
In the rapidly rotating case, on the other hand, the shearing of the perturbation
by the background flow results in greatly enhancing potential energy conversion
of the transverse mode. As a result, the net effect becomes large enough to make
the transverse mode dominate over the parallel mode. Although the transverse roll
convection of finite amplitude appears for a relatively short period of time just after
its onset, the present result might explain some aspects of observed transverse rolls,
such as in the Jovian atmosphere.

1. Introduction
Thermal convection is one of the fundamental motions of geophysical fluids and

plays a central role in transporting heat and material in the vertical direction. As
visualized by satellite pictures, the convection is often organized into horizontal
rolls (e.g. Kuettner 1959; Miura 1986). Many studies have been devoted to the
dynamics of such convection rolls, extensively reviewed by Etling & Brown (1993).
Several observational and theoretical studies have found that the velocity shear of
the background flow is a possible factor in the organization of a convection roll.
For example, linear studies by Kuo (1963) and Asai (1970) showed that with vertical
shear of horizontal velocity a convection roll is preferred with its axis parallel to the
background flow (parallel roll). Davies-Jones (1971), on the other hand, examined the
linear exponential growth of peturbations embedded in a horizontal plane Couette
flow in a non-rotating frame of reference, and found that with horizontal velocity
shear parallel roll convection is also preferred.

Recently, Yoshikawa, Akitomo & Awaji (2001) performed a numerical experiment
on oceanic convection in a baroclinic jet in a rotating frame of reference. Noteworthy is
that roll convection with axis obliquely transverse to the background flow (transverse
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Figure 1. Schematic view of the model configuration.

roll) was observed for a short period of time (2–3 days) just after the onset of
convection. Although the presence of such a transverse roll in the ocean has not
been reported so far (since it is very hard to determine the horizontal structure of
oceanic convection on a 1 km horizontal scale), similar transverse rolls have been
found in the atmosphere (Miura 1986). They have also been observed around the
jet in the Jovian atmosphere. Hathaway & Sommerville (1987) showed that such
transverse rolls can be formed by a rotation vector tilted from the vertical direction.
However, in the experiment of Yoshikawa et al. (2001), the rotation vector is not
tilted. Interesting in their experiment is that the orientation of the roll axis changes
with time due to shearing of the background flow. This suggests that the horizontal
velocity shear organizes convection in the transverse direction, contrary to the results
of Davies-Jones (1971).

One factor that is not considered in Davies-Jones (1971) but should be taken into
account in explaining observed or simulated transverse rolls is the rotation of the
reference frame. Another is the transient nature of the observed phenomena, since
the transverse rolls in Yoshikawa et al. (2001) are observed over a short period of
time. It is known (e.g. Farrell 1993) that the preferred perturbation for a finite period
of time is not necessarily the same as that after an infinitely long period of time has
passed, the situation examined by Davies-Jones (1971).

The identification of possible factors that characterize convection dynamics is
important in understanding the convection in the atmosphere and oceans. The
present study is intended to investigate whether the simulated or observed transverse
convection rolls are generated by the horizontal velocity shear of the background
flow. Numerical experiments are first carried out to examine if with horizontal
shear a transverse roll is preferred to a parallel roll, as suggested by Yoshikawa
et al. (2001), and to explore the conditions for the formation of transverse rolls
with particular attention given to the rotation and transient effects. Thereafter, the
formation mechanism of transverse rolls is investigated in detail by linear analysis.
Finally, there is a discussion of whether or not observed or simulated transverse rolls
are explained by the horizontal velocity shear.

2. Model configuration
Convection in an incompressible and Boussinesq fluid with reference density ρ0,

viscosity ν, and diffusivity κ in Cartesian coordinates x, y, z are considered (figure 1).
The angular velocity of the rotating reference frame about the vertical axis (z) is Ω .
The fluid is bounded by horizontal lids at the top (z = 0) and the bottom (z = −D).
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In order to clearly understand the effects of the horizontal shear of the background
flow on convection, we assume a background flow u in the x-direction with constant
horizontal shear Λ and background fluid density ρ with constant vertical stratification
Γ :

u = u(y) = Λy, ρ = ρ(z) = Γ z.

As in the previous studies, we also assume that the background flow and density are
not self-consistently generated but fixed in time by external forcing which remains
unspecified (e.g. Davies-Jones 1971). In the rotating reference frame, such a flow can
be established by a large-scale pressure gradient balancing the Coriolis acceleration.
In a non-rotating reference frame, such a flow can be generated by two non-slip
sidewalls moving with different speeds in the x-direction (e.g. Tillmark & Alfredsson
1992). Since our concern is the effect of the background flow on convection, the
mechanisms that maintain the background fields are not discussed in detail.

The governing equations for the perturbation are the momentum equation (Navier–
Stokes equation), the continuity equation, and the advective–diffusive equation for
fluid density. By taking the depth of the channel (D) as the scale of length, the viscous
time (D2/ν) as the scale of time t , and the difference between the background density
at the top and the bottom (Γ D) as the scale of density ρ, the non-dimensional form
of the governing equations is

∂u

∂t
+ (u · ∇)u + Re y

∂u

∂x
+ Re vî + Ta1/2k̂ × u = −∇p − Pr−1Ra ρk̂ + ∇2u, (1)

∇ · u = 0, (2)

∂ρ

∂t
+ u · ∇ρ + Re y

∂ρ

∂x
+ w = Pr−1∇2ρ, (3)

where u = (u, v, w) is the velocity vector (normalized by ν/D), p is the pressure
(normalized by ρ0ν

2/D2), and î and k̂ are unit vectors in the x- and z-directions,
respectively. Mathematical operators such as ∇ have the conventional meanings.

The non-dimensional parameters that determine the perturbation growth are

Prandtl number: Pr =
ν

κ
,

Rayleigh number: Ra =
gΓ D4

ρ0κν
,

Reynolds number: Re =
ΛD2

ν
,

Taylor number: Ta =
4Ω2D4

ν2
,

where g is the acceleration due to gravity. For simplicity, Pr is fixed at 1.0. The
horizontal lids are assumed to be smooth and perfectly conducting:

∂u/∂z = ∂v/∂z = w = ρ = 0 at z = −1, 0.

These boundary conditions are selected to allow the simplest mathematical procedure
in the linear analysis (§ 4). Note that an alteration of the above boundary conditions
modifies only the vertical structure of the convection and does not qualitatively
change the present results.
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Figure 2. Time evolution of KE for Re = 1 (solid line), Re = 2.5 (dotted line), and Re = 10
(dashed line) in the non-rotating case (Ra = 5.2 × 103, Ta = 0). Semi-logarithmic coordinates
are used.

3. Numerical experiments
To examine whether with horizontal shear a transverse roll is preferred to a parallel

roll, numerical experiments are initially performed. Since numerical experiments
cannot treat infinite regions, non-slip sidewalls are introduced at y = ±L/D while
a periodic condition in the x-direction is assumed for −L/2D � x � L/2D. In this
study, D/L (aspect ratio) is set so small (� 0.1) that the sidewalls have a negligible
effect on the linear growth of the perturbation (Davies-Jones 1971). This is confirmed
by the experiment with D/L = 0.05 which shows no qualitative difference from that
with D/L = 0.1. The boundary conditions at the sidewalls are

u = v = w = ρ = 0 at y = ±10 (±L/D).

Alterations to the above boundary conditions do not qualitatively change the
horizontal structure of the convection away from the sidewalls as long as D/L

is small.
Equations (1)–(3) are integrated numerically using the SMAC scheme (Amsden &

Harlow 1970; Akitomo 1999). The model domain of 10 × 20 × 1 is divided into
128 × 256 × 8 grid boxes and the governing equations are discretized using the finite
difference method with a second-order central difference scheme. A grid resolution
of 128 × 256 × 8 is sufficient for the present purpose since the experiment with
256 × 512 × 16 grid boxes gives a similar result. Time integration is carried out using
the leap-frog scheme together with the Matsuno scheme (Matsuno 1966). Random
perturbations of the density (ρ = 2 × 10−5) are initially (t =0) imposed to excite
convection.

3.1. Non-rotating case (Ta = 0)

First, convection in the non-rotating frame of reference (Ta = 0) is examined. In this
case, Ra is taken to be 5.2 × 103. Without both the horizontal velocity shear (Re = 0)
and the sidewall, classical linear theory gives the growth rate (referred to as σ l) and
the wavenumber of the most unstable perturbation to be 31.3 and 3.50, respectively.

Figure 2 shows the time evolution of the total kinetic energy (KE) of the
perturbation for Re = 1, 2.5 and 10. KE increases almost exponentially with time
until t � 0.55, although a decrease in its growth rate becomes evident as Re increases
(e.g. 0.2 � t � 0.4 for Re = 10). After t � 0.55, KE continues to grow, but its
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growth rate become much smaller due to an increasing nonlinear interaction of
finite-amplitude perturbation. Figure 3 shows a horizontal section (−5 � x, y � 5) of
the vertical velocity at t = 0.6. For Re = 1 and 2.5 (figure 3a, b), cellular (hereafter
referred to as C-type) convection appears during the experiment (0 � t � 1.0) as for
Re =0 (not shown), though the convection cell for Re = 2.5 seems to be aligned in
the transverse direction. For Re = 10, on the other hand, C-type convection appears
first (0 � t � 0.2) (not shown), changes into parallel roll (hereafter referred to as P-
type) convection, and becomes finite in amplitude (figure 3c). This P-type convection
continues until the end of the experiment (t = 1.0).

The similarities in the convection patterns among Re = 0, 1, and 2.5 indicate that
the effect of the horizontal velocity shear is negligible for Re � 2.5, although the
alignment of cellular convection in the transverse direction for Re =2.5 might suggest
a relationship between the horizontal velocity shear and the transverse rolls. On
the other hand, the P-type convection observed for Re = 10 (figure 3c) indicates a
strong influence of the horizontal velocity shear on convection. Further experiments
for Re =5, 50, and 100 show no qualitative difference from that at Re = 10. These
results show that when the horizontal velocity shear is large, convection tends to be
organized into parallel rolls in the non-rotating case, as concluded by Davies-Jones
(1971).

3.2. Rotating case (Ta �= 0)

Next, convection in the rotating frame (Ta �=0) is examined. Since the present concern
is whether or not the effect of the horizontal velocity shear on the convection structure
is modified by the rotation, and is not the well-known stabilizing effect of the rotation,
both Ra and Ta are taken to be 104 in order for the linear growth rate without the
horizontal shear and sidewalls (σ l) to have the same value as in the non-rotating
case (31.3). The time evolution of KE (not shown) is therefore similar to that in the
non-rotating case.

Figure 4 shows a horizontal section of the vertical velocity at t = 0.6 for Re =1, 2.5
and 10. C-type convection is observed during the experiment for Re = 1 (figure 4a)
as for Re = 0 (not shown). For Re = 2.5, the C-type convection also appears until
t � 0.56 (not shown). Thereafter, however, transverse roll (hereafter referred to
as T-type) convection becomes clearly identified and becomes finite in amplitude
(figure 4b). T-type convection is sheared by the background flow, so that the angle of
the roll axis to the x-direction decreases with time. After t � 0.72, T-type convection
is broken down into C-type convection (not shown) that continues until the end of
the experiment (t = 1.0). This breakdown into C-type convection is probably due to
the nonlinear effect of the perturbation (described later). For Re =10, on the other
hand, C-type convection appears at first (0 � t � 0.12) (not shown), while P-type
convection appears at the end (t � 0.32) and becomes finite in amplitude (figure 4c),
as in the non-rotating case. Noteworthy is that at the middle stage (0.12 � t � 0.32),
T-type convection is identified as shown in figure 5, though it is not as clear as in
figure 4(b).

The type of finite-amplitude convection at onset is examined by further experiments
for several sets of Ra, Re, and Ta. The results are shown in figure 6. If Ra and Ta
are chosen so that σ l is 31.3 (figure 6a), T-type convection appears (though only for
a short period of time just after onset) in the rapidly rotating case (Ta � 104) when
Re =2.5, while it does not appear in the slowly rotating case (Ta � 102). On the other
hand, in a series of experiments with Ta = 104 (figure 6b), T-type convection appears
for smaller (larger) Ra if Re is smaller (larger). The transformation in convection
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Figure 3. Horizontal velocity vectors (arrows), vertical velocity (lines), and density (shading)
at t = 0.6 in the non-rotating case (Ra = 5.2 × 103, Ta =0). Contour (shading) interval for
vertical velocity (density) is half (fourth) of its largest value. (a) Re =1, (b) Re = 2.5, and
(c) Re = 10.
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Figure 4. As figure 3 but for the rotating case (Ra = Ta = 104).



198 Y. Yoshikawa and K. Akitomo

–5 0 5
–5

0

5

x

y

Figure 5. As figure 4(c) but at t = 0.16.
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Figure 6. (a) Type of finite-amplitude convection as a function of Re and Ta. �, //, and ––
represent C-, T-, and P-type convection, respectively. Ra is chosen so that σ l is 31.3. The
observed period for T-type convection of finite amplitude is written in brackets below the
symbol. In the experiments for Ta � 105, a model domain of 5 × 10 × 1 (horizontal extent
is half of the original) is used because of the small horizontal scale of convection due to the
rapid rotation. (b) Type of convection as a function of Re and Ra (Ta = 104). Contour lines
show Tf n/Ttr . Contour interval is 0.25. Solid (dashed) lines show Tf n/Ttr � 1(< 1).

type observed in the slowly rotating case (Ta � 102) and the rapidly rotating case
(Ta � 104) is similar to those observed for Ta = 0 and Ta = 104, respectively.

The above results allow us to suggest the following scenario for the determination of
the type of finite-amplitude convection at its onset. In the linear stage of perturbation
growth, the horizontal velocity shear transforms the horizontal structure of the
convection. Although the transformation is from C-type to P-type in the non-rotating
or slowly rotating case, it is from C-type to P-type via T-type in the rapidly rotating
case. The speed of the transformation increases with the horizontal velocity shear
Re. (In fact, for Ta =104 convection is transformed rapidly into T-type (t � 0.16)
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Figure 7. Schematic representation of the time evolution of perturbation amplitude (such as
figure 2) and time variation of convection type in the rapidly rotating case. Solid, broken,
and dotted lines represent C-, T-, and P-type convection, respectively. (a) Ttr > Tf n when Re is
small. (b) Ttr � Tf n when Re is intermediate. (c) Ttr < Tf n when Re is large.

and P-type (t � 0.32) for Re = 10, while it is transformed at a moderate rate into
T-type (t � 0.56) for Re = 2.5.) Thus, the type of finite convection at its onset is
the type that exists at the time a perturbation becomes finite in amplitude. As a
result, T-type convection can be observed in the rapidly rotating case if the time for
the perturbation to become finite in amplitude (Tf n) is comparable to the time to
transformation into T-type (Ttr ), as schematically shown in figure 7.

The above scenario is validated by estimating Tf n and Ttr as follows: Tf n is a
function of the growth rate (σ ), the initial amplitude (A0) and the finite amplitude
(Af ) of the perturbation. If σ is roughly approximated as σ l (which is constant in
time), Tf n can be estimated as (σ l)−1 log(Af /A0 + 1). On the other hand, Ttr should

be proportional to Re−1 (non-dimensional time scale of the horizontal velocity shear).
From the experiments for Ta � 104, Ttr is estimated as 1.5Re−1. In figure 6(a), σ l is
fixed at 31.3, so that Tf n � 0.6 in these experiments. As a result, T-type convection
appears when Re =2.5 (Ttr � 0.6) in the rapidly rotating case (Ta � 104). In figure 6(b),
the contour lines of Tf n/Ttr are also superimposed. This clearly shows that in the
rapidly rotating case, T-type convection appears when Tf n � Ttr , while C-type (P-type)
convection is found when Tf n < Ttr (Tf n > Ttr ).

Note that after the nonlinear effect of the finite-amplitude perturbation becomes
significant, the above scenario is no longer valid. The nonlinear effect does not
change the horizontal structure of C- and P-type convection, but it changes T-type
into C-type convection. One reason for this change is as follows: The background
flow shears the horizontal pattern of convection and tends to align convection into
the x-direction. However, once the transverse roll becomes of finite amplitude, the
perturbation itself continues to generate variations in velocity and density in the
original transverse direction, regardless of the shearing of the background flow. As a
result, there exist two preferred orientations, and hence the convection roll is likely to
be broken down into small cells (C-type). The other reason may be the sidewall which
affects the interior region in the nonlinear stage. In the rotating case, convection near
the sidewall has different properties (such as the wavenumber and the growth rate)
from that in the interior. This is because the fluid near the wall can escape from the
constraint of the Coriolis acceleration. (This situation is the same as that for Kelvin
waves, which is that the gravity wave near the wall can escape from the Coriolis
constraint and hence escape from being an inertial gravity wave.) In the linear stage,
this effect is localized near the wall. However, in the later nonlinear stage, the effect is
gradually advected into the interior to contaminate convection there. This is probably
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one of the reasons why the re-formation of the convection roll in the rotating frame
(Kuppers & Lortz 1969) is hardly observed in the present experiment.

4. Linear analysis
In the previous section, we found that T-type convection is formed in the rap-

idly rotating frame as long as Tf n � Ttr . The next question is therefore why the
transformation into the T-type occurs only in the rapidly rotating frame, which is
investigated in this section by linear analysis.

4.1. Formulation of the problem

The basic equations are the linearized version of (1)–(3). The y-component of ∇ × (1)
(vorticity equation), the y-component of ∇×∇ × (1), and ∇2

z (3) (∇2
z = ∂2/∂x2+∂2/∂z2)

constitute the reduced set of governing equations for η(= ∂u/∂z − ∂w/∂x) (the y-
component of vorticity), v, and ρ as(

∂

∂t
+ Re y

∂

∂x

)
η −

(
Ta1/2 − Re

) ∂v

∂z
= Pr−1Ra

∂ρ

∂x
+ ∇2η, (4)

(
∂

∂t
+ Re y

∂

∂x

)
∇2v + Ta1/2 ∂η

∂z
= Pr−1Ra

∂2ρ

∂y∂z
+ ∇4v, (5)

(
∂

∂t
+ Re y

∂

∂x

)
∇2

zρ −
(

∂η

∂x
+

∂2v

∂y∂z

)
= Pr−1∇2∇2

zρ. (6)

From (2), u and w are expressed using η and v as

∇2
zu =

∂η

∂z
− ∂2v

∂x∂y
, ∇2

zw = −∂η

∂x
− ∂2v

∂y∂z
. (7)

In Davies-Jones (1971), the growth rate of the perturbation is assumed to be
constant in time. However, such a solution cannot represent the transformation
from C- to P- via T-type convection. In fact, the growth rate of KE observed in
the numerical experiments is not constant even in the linear stage (figure 2), which
demonstrates the invalidity of such an assumption. One way to examine such transient
linear dynamics may be the optimal perturbation method (Farrell 1993). In order to
apply this method to the present problem, however, the sidewall should be introduced
as in the numerical experiment. Although such an analysis is useful for understanding
the results of numerical experiments, the effect of horizontal velocity shear itself is
not illustrated clearly due to the effect of the sidewall (which is not at present of
concern). The exclusion of the sidewall is particularly important when transverse rolls
in the atmosphere and oceans are considered.

Instead of assuming a constant growth rate or a sidewall, we assume that the
horizontal structure of the perturbation is sheared by the background flow u = Re y,
as observed in the numerical experiments. Thus, we take solutions of the form

η(x, y, z, t) = Hkl(t) exp i(k(x − Re yt) + ly) sin(πz),

v(x, y, z, t) = Vkl(t) exp i(k(x − Re yt) + ly) cos(πz),

ρ(x, y, z, t) = Pkl(t) exp i(k(x − Re yt) + ly + π/2) sin(πz),


 (8)

where Hkl(t), Vkl(t), and Pkl(t) are time-dependent amplitudes of η, v, and ρ,
respectively. In this study, the above form of the solution is referred to as the
Lagrangian mode. Note that the actual wavenumber in the y-direction is given by
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l − kRe t(= l̃(t)), which varies in time if kRe �= 0. Without loss of generality, k � 0 is
taken. P-type convection is represented by the Lagrangian mode k = 0, while T-type
is represented by k > 0. Hereafter, the mode k = 0 is called the P-mode, while the
mode k > 0 is called the T-mode.

Note that the above form of the solutions can be applied to the infinite horizontal
layer bounded at the top and the bottom lids (figure 1), so that only the effect of the
horizontal velocity shear on convection can be examined. In this configuration, the
boundary condition is written as

∂v/∂z = η = ρ = 0 at z = 0, −1,

which is satisfied by (8).
Transforming the partial differential operator in (4)–(6) as

∂

∂t
→ d

dt
− ikRe y,

∂

∂x
→ ik,

∂

∂y
→ il̃(t),

∂

∂z
→ π or − π,

∇2 → −k2 − l̃(t) − π2 ≡ −akl(t)
2 − π2,

∇2
z → −k2 − π2 ≡ −b2,

the substitution of (8) into (4)–(6) results in the following ordinary differential
equations with respect to time for Hkl(t), Vkl(t), and Pkl(t):

d

dt
Hkl(t) + π

(
Ta1/2 − Re

)
Vkl(t) = −kPr−1RaPkl(t) − (akl(t)

2 + π2)Hkl(t),

d

dt
(−akl(t)

2 − π2)Vkl(t) + πTa1/2Hkl = −πl̃(t)Pr−1RaPkl(t) − (akl(t)
2 + π2)2Vkl(t),

d

dt
(−b2)Pkl(t) − kHkl(t) + πl̃(t)Vkl(t) = −b2

(
−a2

kl − π2
)2

Pr−1Pkl(t).

Noting that d(akl(t)
2)/dt = −2kl̃(t)Re, further manipulation yields

d

dt


Hkl(t)

Vkl(t)

Pkl(t)


 = Akl(t)


Hkl(t)

Vkl(t)

Pkl(t)


, (9)

Akl(t) =




−(akl(t)
2 + π2) −π

(
Ta1/2 − Re

)
−kPr−1Ra

π

akl(t)2 + π2
Ta1/2 2kl̃(t)

akl(t)2 + π2
Re − (akl(t)

2 + π2)
πl̃(t)

akl(t)2 + π2
Pr−1Ra

− k

b2

πl̃(t)

b2
−(akl(t)

2 + π2)Pr−1




.

(10)

Two effects of the horizontal velocity shear appear in Akl(t). One is the acceleration
(or deceleration) of u by the interplay of the horizontal velocity shear and v (the
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Figure 8. Pkl(t) for Re = 2.5 in the non-rotating case (Ra = 5.2 × 103, Ta =0). (a) t = 0.2
(Pmax = 5.37 × 102), (b) t = 0.6 (Pmax = 1.46 × 108), and (c) t = 1.0 (Pmax = 1.01 × 1013).
Contour interval is one fifth of the largest Pkl(t) of P-mode (k = 0). Shading represents larger
Pkl(t) of the T-mode (k > 0) than the largest Pkl(t) of the P-mode (k = 0). Dotted lines show
the isolines of l̃(t). Asterisks mark points (k, l) = (0, 3.50), (1.63, −2.63), and (3.13, 2.13).

term Re vî in (1)), which is given by πRe from the term −π(Ta1/2 − Re) in Akl(t). We
refer to this effect as the Reynolds acceleration. The other is the time variation of
akl(t), expressed by the elements that include akl(t)

2. Note that if Akl(t) is considered
at a fixed time, this effect is expressed only by the term 2kl̃(t)Re/(akl(t)

2 + π2), which
originates from d(akl(t)

2)/dt . This effect is understood clearly if neutrally stratified
(Ra = 0) inviscid fluid in the non-rotating frame (Ta = 0) is considered. In such a
situation, (9) is easily solved to obtain Vkl(t) = V0/(akl(t)

2 + π2) where V0 is constant.
Thus, the time variation in akl(t) causes the time variation of Vkl(t) (and others) so as
to conserve (akl(t)

2 + π2)|Vkl(t)|. These two effects are important for the instantaneous
growth of the each Lagrangian mode, as described later.

4.2. Time evolution of the perturbation amplitude

The time integration of (9) is carried out numerically using the Adams scheme. The
values of k and l are varied from 0 to 10 and −10 to 10, respectively, at an interval of
0.125. The most unstable eigenvector of Akl(0) is used for Hkl(0), Vkl(0), Pkl(0). Pkl(t) is
used to determine the preferred mode. A much larger Pkl(t) for k > 0 (T-mode) than
for k = 0 (P-mode) corresponds to the T-type convection observed in the numerical
experiments, while a much smaller Pkl(t) for k > 0 than that for k = 0 corresponds
to P-type convection. Otherwise, C-type convection appears.

4.2.1. Non-rotating case (Ra = 5.2 × 103, Ta = 0)

Figure 8 shows Pkl(t) at t = 0.2, 0.6 and 1.0 for Re = 2.5 as a function of k and
l. Although for Re = 0 Pkl(t) is largest on the semicircle akl = 3.50 at all times
(not shown), for Re =2.5 Pkl(t) is gradually distorted with time from a semicircular
to a heterogeneous distribution. At t = 0.2 (figure 8a), Pkl(t) is largest at (k, l) =
(1.63, −2.63) (T-mode), which is slightly (2.22%) larger than that at (k, l) = (0, ±3.50)
(P-mode). However, the general pattern of Pkl(t) is still similar to that for Re =0.
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Figure 9. (a) Time evolution of σT (t) of the Lagrangian mode (k, l) = (3.13, 2.13) in the
non-rotating case (Ra = 5.2 × 103, Ta = 0). Time is labelled near the top of the figure. The
horizontal axis is l̃(t). The corresponding σ e

T is also plotted as a dashed line. Dotted line
represents σP (t). (b) Horizontal velocity vectors, vertical velocity (lines), and density (shading)
of the most unstable eigenmode at l̃(t) = −1.50. Solid (dashed) line represents downward
(upward) velocity, while the dark (light) shading represents positive (negative) density.
(c) Schematics of the horizontal velocity vector (black arrows) and the velocity change due to
the Reynolds acceleration (grey solid arrows in the upper panel) and the velocity change due
to the time variation in akl (grey solid arrows in the lower panel). The direction normal to the
roll axis is denoted by the dotted line.

At t = 0.6 (figure 8b), larger values remain only at around (k, l) = (3.13, 2.13) (T-
mode) and (k, l) = (0, ±3.50) (P-mode). The former is 12.3% smaller than the latter.
At t = 1.0 (figure 8c), only the Pkl(t) of the P-mode at around (k, l) = (0, ±3.50)
continues to grow and the Pkl(t) of the T-mode at k > 0 becomes much smaller.

The above time evolution of Pkl(t) for Re = 2.5 is consistent with the scenario
suggested in § 3. That is, the perturbation grows linearly while transforming its
horizontal structure from C-type (figure 8a, b) to P-type (figure 8c) in the non-rotating
case. In the numerical experiment for Re = 2.5, the perturbation becomes finite in
amplitude at t � 0.6 (figure 8b), so that C-type convection is observed (figure 3b). Note
that the nonlinear effect becomes significant thereafter in the numerical experiment
and hence C-type convection continues until the end of the experiment (t = 1.0). The
relatively larger Pkl(t) at (k, l) = (3.13, 2.13) at t = 0.6 (figure 8b) contributes to a
transverse alignment of the C-type convection (figure 3b). In fact, the spectrum of
density perturbations in the numerical experiment (not shown) shows larger peaks
at (k, l) � (3.1, 2.2) and (0, 3.1) in the wavenumber space (the former being smaller
than the latter). It should also be noted that the transition from the semicircular
distribution of Pkl(t) to a heterogeneous one becomes faster with increasing Re
(not shown), which corresponds to the faster transformation from C-type to P-type
observed in the numerical experiment.

Figure 9 shows the time evolution of the growth rate of Pkl(t) for (k, l) = (3.13, 2.13)
(referred to as σT (t)). The horizontal axis is l̃(t)(= l − k Re t). The dotted line shows
the growth rate of (k, l) = (0, ±3.50) (referred to as σP (t)), which is constant in time.
Noteworthy is that σT (t) is slightly larger than σP (t) at 0.39 � t � 0.53. Thus, even in
the non-rotating case, the T-mode can grow faster than the P-mode. However, σT (t)
at the other times is much smaller than σP (t) so that Pkl(t) of the T-mode could never
be larger than that of the P-mode in the non-rotating case.



204 Y. Yoshikawa and K. Akitomo

Although the net effect of the horizontal velocity shear on the T-mode is thus
small, it would be instructive to know why σT (t) can be larger than σP (t). To this end,
the eigenmode of Akl(t) with the largest eigenvalue is investigated. This eigenmode
represents the most preferred mode by the background field ‘at fixed time t ’. Therefore,
it mirrors the ‘instantaneous’ dynamics of the background field in which the effects of
the Reynolds acceleration and the time change in akl(t) at that instant are included.
On the other hand, the Lagrangian mode reflects ‘integrated’ dynamics ‘until that
time’. Eigen analysis is thus useful for identifying each effect of the background field
at each time, one by one. Since the eigenmode changes with time if kRe �= 0, the
Lagrangian mode generally differs from the eigenmode, even though they are the
same at t = 0.

The dashed line in figure 9(a) shows the largest eigenvalue of (k, l) = (3.13, 2.13)
(referred to as σ e

T ). Note that the largest eigenvalue of the P-mode is the same as σP (t).
Although σT (t) is slightly smaller than σ e

T , the time variation of σT (t) is explained
well by that of σ e

T . Two peaks of σ e
T are found at around l̃(t) = ±1.5 at which akl(t)

becomes close to the most preferred value (3.50) for perturbation growth with the
present Ra and Ta. The difference in σ e

T at the two peaks is due to the effects of
Reynolds acceleration and the time change in akl(t). Figures 9(b) and 9(c) show the
perturbation structure and a schematic representation of the above two effects at
l̃(t) = −1.50. The Reynolds acceleration acts to increase |u|, as represented by the
grey arrows in the upper panel of figure 9(c). On the other hand, the time change
in akl(t), represented by the grey arrows in the lower panel acts to decrease |v|. The
comparison of the eigenmode of Akl(t) without the effect of the Reynolds acceleration
(the term πRe) and that without the effect of the time variation of akl(t) (the term
2kl̃(t)Re/(akl(t)

2 +π2)) makes it clear that the former effect is larger than the latter. As
a result, convergence of the velocity component normal to the roll axis is increased.
By virtue of the continuity of fluid (equation (2)), increased convergence enhances
the vertical velocity and thus the conversion of potential energy, so that the growth
rate increases. At l̃(t) = 1.50, the situation is reversed, and hence potential energy
conversion and the growth rate at that time are decreased by the horizontal velocity
shear.

4.2.2. Rotating case (Ra = Ta = 104)

Figure 10 shows Pkl(t) for Re =2.5 at t = 0.2, 0.6 and 1.0. At t = 0.2 (figure 10a),
Pkl(t) is slightly distorted from a semicircular distribution. Though Pkl(t) for around
(k, l) � (5.13, 1.50) (T-mode) is slightly (8.06%) larger than that for (k, l) = (0, ±5.25)
(P-mode), the general pattern of Pkl(t) differs little from that for Re =0, as in the non-
rotating case. By t = 0.6 (figure 10b), on the other hand, Pkl(t) for (k, l) = (4.75, 3.63)
becomes much (20.1%) larger than that for (k, l) = (0, ±5.25), in marked contrast to
the non-rotating case. At t = 1.0 (figure 10c), only Pkl(t) for around (k, l) = (0, ±5.25)
continues to grow, which is again similar to the non-rotating case.

The above time evolution of Pkl(t) is also consistent with the scenario suggested
in § 3. The transformation from C-type (figure 10a) to P-type (figure 10c) via T-type
(figure 10b) convection occurs during the linear growth of a perturbation. In the
numerical experiment for Re = 2.5, the perturbation becomes finite in amplitude at
t � 0.6 (figure 10b), so that T-type convection is observed (figure 4b). In fact, the
spectrum of density perturbations shows a larger peak at (k, l) � (4.70, 3.5) than at
(0, 5.0) in the wavenumber space (not shown).

Figure 11(a) shows the time evolutions of the growth rate of (k, l) = (4.75, 3.63)
(σT (t)). The corresponding largest eigenvalue (σ e

T ) is also plotted as a dashed line. The
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Figure 10. As figure 8 but for the rotating case (Ra =Ta = 104). (a) t = 0.2 (Pmax =
6.80 × 102). (b) t = 0.6 (Pmax = 2.32 × 108). (c) t = 1.0 (Pmax =6.44 × 1013). Asterisks mark-
points (k, l) = (0, 5.25), (5.13, 1.50) and (4.75, 3.63).
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Figure 11. As figure 9 but for the rotating case (Ra = Ta =104). (k, l) = (4.75, 3.63). Dark
grey arrows in (c) show the velocity change due to the Reynolds acceleration and the velocity
change due to the time variation in akl subject to the Coriolis acceleration. Light grey arrows
represent the velocity changes before the Coriolis acceleration rotates them to the right.

mechanism that makes σ e
T larger than the growth rate of the P-mode (σP (t)) is similar

to the non-rotating case, but is affected by the rotation. At l̃(t) = −2.25 when σ e
T is

largest, the Reynolds acceleration subject to the Coriolis acceleration acts to enhance
the convergence of the velocity component normal to the roll axis (figure 11b, c).
Contrary to the non-rotating case (figure 9), the time change in akl(t) also acts to
(though slightly) enhance it. As a result, potential energy conversion is increased to
make σ e

T (t) larger than σP (t). At l̃(t) = 2.25, the situation is reversed, and σ e
T (t) is

smaller than σP (t).
More noteworthy in the rotating case is that σT (t) is much larger than σ e

T in

the early stage (t < 0.5). It is this difference that makes Pkl(t)(= exp(
∫ t

0
σkl(t

′) dt ′))
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(a)                                                        (b)

t = t0

t = t1
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t = t1

Figure 12. Schematic relation between the time evolutions of the Lagrangian mode and
eigenmode. (a) Non-rotating case, and (b) rotating case. Solid (dashed) line shows the line of
upward (downward) velocity and large arrows represent the horizontal velocity vector at the
top lid. Grey represents the eigenmode at t = t0, while black represents that at t = t1(> t0).
Even though the Lagrangian mode is equal to the eigenmode at t = t0, the former deviates
from the latter at t = t1. The small arrow represents the difference in the horizontal velocity
vector between the Lagrangian mode and eigenmode at t = t1, on the assumption that the
Lagrangian mode does not change from t = t0, for simplicity.

of the T-mode much larger than that of the P-mode (figure 10b) and hence T-type
convection is observable (figure 4b) in the rotating case. This difference is explained
schematically in figure 12. The axis of the convection roll rotates with time due to
shearing of the background flow, and the corresponding horizontal velocity vector
of the most unstable eigenmode rotates accordingly. However, the actual horizontal
velocity vector of the Lagrangian mode cannot adjust to such rotation completely.
This results in the difference between the Lagrangian mode and the corresponding
eigenmode. This process occurs in both the non-rotating and rotating cases. In the
non-rotating case (figure 12a), such an incomplete adjustment slightly reduces the
convergence of the horizontal velocity and hence the vertical velocity compared with
those of the eigenmode. As a result, σT (t) is slightly smaller than σ e

T (figure 9a). In the
rotating case (figure 12b), however, an incomplete adjustment considerably enhances
the vertical velocity and the conversion of potential energy. As a result, σT (t) becomes
significantly larger than σ e

T (figure 11a), so that T-type convection appears.

5. Summary
The structure of thermal convection in horizontal plane Couette flow is investigated.

Numerical experiments show that the transformation of the horizontal structure takes
place in the linear stage of perturbation growth. In a non-rotating or slowly rotating
frame of reference, the transformation from cellular (C-type) to parallel roll (P-
type) convection occurs. In a rapidly rotating frame of reference, on the other
hand, transformation from C-type to P-type via transverse roll (T-type) convection
takes place. The speed of the transformation increases with increasing horizontal
velocity shear. Therefore, T-type convection of finite amplitude appears if the time
for perturbation to finite amplitude is comparable to the time to transformation into
T-type. In the later nonlinear stage, T-type convection is broken down into C-type
convection, probably due to the nonlinear effect of the finite-amplitude perturbation.
Although T-type convection of finite amplitude is thus observed only for a short
period of time just after the onset of convection in the rapidly rotating case, this
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result reveals a new aspect of the effects of the horizontal shear of the background
flow on convection.

The formation mechanism of T-type convection in the linear stage of perturbation
growth is investigated by linear analysis. We formulated the problem so that the
horizontal structure of the perturbation is sheared by the background flow. This
formulation significantly illuminates the underlying dynamics of the perturbation
growth in the case where the advection speed of the perturbation is equal to the
background flow, as in the present study. By this formulation, the perturbation is
separated into the transverse mode (that is sheared by the background flow) and
the parallel mode, and the governing equations change from partial to ordinary
differential equations for perturbation amplitude with respect to time.

Integration of the ordinary differential equations and a complementary eigen
analysis make it clear that the Reynolds acceleration and time change in the
total wavenumber of the perturbation can temporarily accelerate the growth of
the transverse mode in both the non-rotating and rotating cases. However, their net
effects are so small that the transverse mode cannot be much larger than the parallel
mode in the non-rotating or slowly rotating case. On the other hand, in the rapidly
rotating case where the Coriolis acceleration changes the direction of the horizontal
velocity vector significantly to the right, the shearing of the perturbation by the
background flow results in enhanced potential energy conversion of the transverse
mode. As a result, the transverse mode dominates over the parallel mode.

The present results successfully explain the transverse roll convection simulated by
Yoshikawa et al. (2001) in which Ta ∼ 104 (2Ω =10−4 s−1, D ∼ 150 m, ν = 0.02 m2 s−1),
though the actual formation of such transverse rolls remains controversial, since the
value of ν in regions of active oceanic convection is unknown. The present result might
also explain some aspects of transverse roll convection observed in the atmosphere
of planets such as Jupiter whose rotation speed is faster (the rotation period is about
10 hours). In fact, transverse roll convection is observed where the horizontal velocity
shear is large, though the tilted rotation vector might also play some role in forming
transverse roll convection (e.g. Hathaway & Sommerville 1987). Further identification
of the mechanisms relevant to the generation of transverse roll convection in the
Jovian atmosphere requires observations of the vertical extent of convection D and
eddy viscosity ν. In the atmosphere of the Earth, the vertical extent of cloud streets
is so small (∼ 2 km; Etling & Brown 1993) that Ta is only ∼ 200 for 2Ω ∼ 10−4 s−1

(40◦N) and ν ∼ 30 m2 s−1 (Krishnamurti 1975). Thus, the cloud streets are less likely
to be organized in the transverse direction by the horizontal velocity shear.

The authors would like to thank Professor A. Masuda of Kyushu University for his
helpful advice on eigen analysis. The numerical calculation was done on a VPP5000 at
the Computing and Communications Center of Kyushu University. SSL II (Scientific
Subroutine Library II) was used for the time integration and eigen analysis in
section 4.
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